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Abstract. The surface impedance observed by a plane TE-wave impinging on a coated right-angled perfectly
conducting wedge is derived for a high contrast dissipative coating. The impedance proves to be constant ove
rmost of the surface of the coating. The value of the constant agrees with that obtained when the coating is placed
on an infinite perfectly conducting plane. Near the edge of the coating, however, the impedance is not invariable.
Both the magnitude and phase can deviate substantially from their asymptotic values; also they change with the
angle of incidence of the irradiating wave. The region of variability depends on the amount of absorption but does
not exceed a free-space wavelength for the cases considered.
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1. Introduction

Coated surfaces are not uncommon obstacles encountered by electromagnetic waves. As the
frequency grows, the influence of the coating becomes more important. With mobile phones,
to mention one example, propagation in urban areas can involve interaction with a variety
of structures. To aid our understanding of what happens, there is a need to tackle canonical
problems. Canonical problems not only offer some insight into phenomena but also serve as
benchmarks for the approximate methods which have to be deployed in practical situations.

One canonical problem which has defied analytical solution so far is the coated wedge.
Indeed, it is only recently that some progress has been made with the dielectric wedge (see
Jones [1, 2] and the references cited therein). It would be helpful if the coated wedge could
be modelled by means of an impedance boundary condition on its faces. Consideration of
the interior of the coating could be avoided then. Also, the possibility arises of being able to
apply the analytical and numerical methods available for wedges with impedance boundary
conditions.

In this paper is considered the problem of a coated wedge in which the angle of the wedge
is 90◦. It is required that the coating be of high contrast and possess absorption. It is shown
that the surface impedance is constant, except within a short distance (less than a free-space
wavelength) of the edge. Thus a first approximation to the scattered field can be derived by
treating the surface impedance as constant everywhere. Moreover, since there is no reason to
suppose that the behaviour is peculiar to the right-angled wedge, it offers the opportunity of
obtaining a scattering approximation for a wedge of any (non re-entrant) angle. Of course,
neglect of the variation in the surface impedance near the edge may have an effect on the
diffracted waves, but whether or not this is of significance is an open question.

When the point of observation is on the illuminated face well away from the edge, the
coating behaves as if it were on an infinite plane. Therefore, the impedance there can be
determined by standard techniques. It is this impedance which proves to be the constant
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referred to above. What is really remarkable is that the same constant occurs for the face
in shadow. This could not have been expected. A face in shadow is not reached directly by
the incident field. Instead its excitation comes from interior waves and fields diffracted at the
edges. So it is not immediately evident that the face behaves as if it were backed by an infinite
plane in the incident wave.

What the following investigation shows is that the surface impedance does coincide with
that of an infinite plane interface, whether the face is in shadow or not, provided the point
of observation is not too close to the edge. How far one has to be from the edge for the
impedance to be constant depends on the dissipation: the larger it is, the shorter the distance
has to be. The distance does not exceed a free-space wavelength for quite moderate absorption.
While the impedance does not vary away from the edge, the situation near the edge is totally
different. Here the behaviour of the impedance depends on the position of the exciting source
in a complicated fashion. There can be profound differences in both magnitude and phase.
Whether or not the face is in shadow affects the variation too.

The determination of a good approximation to the field in the coating when the structure
is irradiated by a line source is formulated as a boundary-value problem in Section 2. The
formulation assumes that the coating is absorbing and of high contrast. In Section 3 the
boundary-value problem is converted into solving an integral equation. A method for the
solution of the integral equation is developed in Section 4. The resulting field on the boundary
of the coating is derived in Section 5 and specialised to the case of an incident plane wave in
Section 6. An application of the theory to a particular example is given in Section 7.

2. Formulation

The cross-section of the coated wedge lies in the (x, y)-plane with the apex at the origin.
The faces of the coating, which is right-angled, occupy x ≥ 0 and y ≥ 0, respectively. The
thickness of the coating is taken to be h so that the faces of the perfectly conducting wedge are
x ≥ h, y = h and x = h, y ≥ h, respectively. The remainder of the (x, y)-plane is assumed
to be free space.

Only fields which do not vary in the direction parallel to the edge of the coated wedge
will be discussed. The dependence on time will be taken as eiωt and this factor will be sup-
pressed subsequently. The wavenumber in free space is denoted by k. Inside the coating the
wavenumber is k1. The coating is assumed to be lossy so that k1 has a negative imaginary
part; as a consequence k1 = kr − iki with both kr and ki positive. It will be assumed that the
properties of the coating are such that |k1/k|2 � 1 holds.

Let the excitation be due to a line source, parallel to the edge of the wedge, located at the
point (x0, y0) in free space. Then the field p(x, y) in free space satisfies

(∇2 + k2)p(x, y) = −δ(x − x0)δ(y − y0), (1)

where ∇2 is the two-dimensional Laplacian. The field p1(x, y) inside the coating is a solution
of

(∇2 + k2
1)p1(x, y) = 0. (2)

The boundary conditions on the faces of the coating are assumed to be

p = p1,
∂p

∂n
= k2

k2
1

∂p1

∂n
(3)



TE-impedance of a coated right-angled wedge 121

∂/∂n being a derivative normal to the boundary. On the wedge the boundary condition is

∂p1/∂n = 0. (4)

Furthermore, the field is required to be radiating at infinity. These conditions are pertinent,
in electromagnetic applications, to H -polarised or TE-waves in which the permeability of the
coating on the perfectly conducting wedge is the same as that of free space.

Let G0(x, y, ξ, η) be the Green’s function in free space such that its normal derivative
vanishes on the faces of the coating and which obeys the condition of radiating at infinity. It
is a solution of

(∇2 + k2)G0(x, y, ξ, η) = −δ(x − ξ)δ(y − η).

Denote by C the trace of the faces of the coating on the (x, y)-plane. On C let s be the arc
length running from −∞ to 0 on x = 0 and from 0 to ∞ on y = 0. Then, for (x, y) in free
space,

p(x, y) = G0(x, y, x0, y0) +
∫
C

G0(x, y, ξ, η)
∂

∂nξ

p(ξ, η) ds. (5)

The direction of the unit normal nξ is into the coating so that ∂/∂nξ has the same sense as
∂/∂ξ on x = 0 and as ∂/∂η on y = 0.

As |k1/k| → ∞ the conditions in (3) indicate that ∂p/∂n → 0. It follows from (5) that
p(x, y) → G0(x, y, x0, y0). Therefore, a good first approximation when |k1/k|2 � 1 is

p(ξ, η) = G0(ξ, η, x0, y0). (6)

As a consequence of (3)

p1(ξ, η) = G0(ξ, η, x0, y0) (7)

for (ξ, η) on the faces of the coating. Thus, a first approximation to p1 is provided by a solution
of (2) in the coating which complies with the boundary conditions of (4) and (7).

Once p1 has been found ∂p1/∂n is known on the faces of the coating and a correction to
p is available from (5) via (3). Clearly, an iteration procedure could be formed on this basis.
However, this avenue will not be explored because the main difficulty is the determination
of p1. Instead attention will be confined to finding p1 subject to the boundary conditions (4)
and (7).

3. Determination of p1

Let G1(x, y, ξ, η) be the Green’s function which satisfies

(∇2 + k2
1)G1(x, y, ξ, η) = −δ(x − ξ)δ(y − η)

and complies with the boundary conditions

G1(x, y, ξ, η) = 0

for x ≥ 0, y = 0 and x = 0, 0 ≤ y ≤ h as well as

∂

∂y
G1(x, y, ξ, η) = 0



122 D.S. Jones

on x ≥ 0, y = h. In addition, G1 is to be exponentially decaying as x → ∞. Then, in view of
(3) and (4),

p1(x, y) =
∫ h

0

[
∂p1

∂η
(ξ, η)

]
η=h

G1(x, y, ξ, h) dξ +
∫ h

0
p(0, η)

[
∂

∂ξ
G1(x, y, ξ, η)

]
ξ=0

dη

+
∫ ∞

0
p(ξ, 0)

[
∂

∂η
G1(x, y, ξ, η)

]
η=0

dξ (8)

for x ≥ 0, 0 ≤ y ≤ h.
Next, let G2(x, y, ξ, η) be the Green’s function satisfying

(∇2 + k2
1)G2(x, y, ξ, η) = −δ(x − ξ)δ(y − η)

which meets the boundary conditions

G2(x, y, ξ, η) = 0

on x = 0, y ≥ h,

∂

∂y
G2(x, y, ξ, η) = 0

on 0 ≤ x ≤ h, y = h and

∂

∂x
G2(x, y, ξ, η) = 0

for x = h, y ≥ h. Moreover, G2 is to be exponentially decaying as y → ∞. Then

p1(x, y) =
∫ ∞

h

p(0, η)

[
∂

∂ξ
G2(x, y, ξ, η)

]
ξ=0

dη −
∫ h

0

[
∂p1

∂η
(ξ, η)

]
η=h

G2(x, y, ξ, h) dξ

(9)

for 0 ≤ x ≤ h, y ≥ h.
Both p1 and ∂p1/∂η are continuous across the interface 0 ≤ x ≤ h, y = h. These

conditions are satisfied by (8) and (9) provided that∫ h

0

[
∂p1

∂η
(ξ, η)

]
η=h

{G1(x, h, ξ, h) + G2(x, h, ξ, h)} dξ = f (x), (10)

where

f (x) =
∫ ∞

h

p(0, η)

[
∂

∂ξ
G2(x, h, ξ, η)

]
ξ=0

dη −
∫ h

0
p(0, η)

[
∂

∂ξ
G1(x, h, ξ, η)

]
ξ=0

dη

−
∫ ∞

0
p(ξ, 0)

[
∂

∂η
G1(x, h, ξ, η)

]
η=0

dξ. (11)

Since f (x) is known, on account of (6), Equation (10) constitutes an integral equation on
the interval (0, h) of x for ∂p1/∂η. Once this integral equation has been solved, p1 is known
throughout the coating by means of (8) and (9).
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4. Solution of the integral equation

In order to solve the integral equation (10) explicit expressions are needed for G1 and G2.
Let νn = (n + 1

2 )π/h and κ2
n = k2

1 − ν2
n. Define κn to have a negative imaginary part; this

is consistent with the definition of k1. Then all the conditions imposed on G1 and G2 in the
preceding section are met by

G1(x, y, ξ, η) =
∞∑
n=0

1

iκnh
{e−iκn|x−ξ | − e−iκn(x+ξ)} sin νny sin νnη, (12)

G2(x, y, ξ, η) =
∞∑
n=0

1

iκnh
{e×iκn|y−η| + e−iκn(2h−y−η)} sin νn sin νnξ. (13)

The negative imaginary part of κn ensures that there is appropriate decay as x → ∞ and
y → ∞, respectively, in the two cases.

Now multiply both sides of (10) by sin νmx and integrate with respect to x from 0 to h.
There results∫ h

0

[
∂p1

∂η
(ξ, η)

]
η=h

{
1

κm

(tan κmh − i) sin νmξ − 2i

h
(−1)m

∞∑
n=0

e−iκnh sin κnξ

ν2
m − κ2

n

}
dξ

=
∫ h

0
f (x) sin νmx dx (14)

after taking advantage of the fact that

∞∑
n=0

1

ν2
m − κ2

n

= h

2κm

tan κmh. (15)

Let p′
1 = [∂p1(0, η)/∂η]η=h. Then∫ x

h

{[
∂p1

∂η
(ξ, η)

]
η=h

− p′
1

}
dξ

vanishes at x = h and its derivative is zero at x = 0. Hence it can be expanded in terms of the
orthogonal functions cos νrx. Suppose that, on 0 ≤ x ≤ h,∫ x

h

{[
∂p1

∂η
(ξ, η)

]
η=h

− p′
1

}
dξ =

∞∑
r=0

dr cos νrx (16)

so that

1

2
hdr =

∫ h

0
cos νrx

∫ x

h

{[
∂p1

∂η
(ξ, η)

]
η=h

− p′
1

}
dξ dx.

An integration by parts gives

νrdr = 2

h

(
p′

1

νr

− cr

)
, (17)
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where

cr =
∫ h

0

[
∂p1

∂η
(ξ, η)

]
η=h

sin νrξ dξ. (18)

On the other hand∫ h

0

[
∂p1

∂η
(ξ, η)

]
η=h

sin κnξ dξ =
∫ h

0

{[
∂p1

∂η
(ξ, η)

]
η=h

− p′
1

}
sin κnξ dξ

+p′
1

κn

(1 − cos κnh).

Integrate by parts and then substitute the representation in (16). It follows that∫ h

0

[
∂p1

∂η
(ξ, η)

]
η=h

sin κnξ dξ = p′
1

κn

(1 − cos κnh) − κn cos κnh

∞∑
r=0

(−1)rνrdr

ν2
r − κ2

n

.

Replace dr by means of (17) and observe that

∞∑
r=0

(−1)r

νr(ν2
r − κ2

n)
= h

2κ2
n

(sec κnh − 1). (19)

Consequently∫ h

0

[
∂p1

∂η
(ξ, η)

]
η=h

sin κnξ dξ = 2κn

h
cos κnh

∞∑
r=0

(−1)rcr
ν2
r − κ2

n

. (20)

Insertion of (18) and (20) into (14) leads to

cm

κm

(tan κmh − i) − 4i

h2

∞∑
r=0

∞∑
n=0

(−1)m+r κncr e−iκnh cos κnh

(ν2
r − κ2

n)(ν
2
m − κ2

n)
=

∫ h

0
f (x) sin νmx dx, (21)

which provides a linear system of equations to fix the coefficients cr . Solution of the system
determines ∂p1/∂n in essence either through (18) or (16) and (17).

In fact, knowledge of the cr is sufficient to determine the behaviour of p1 throughout the
coating. This point can be illuminated by finding the contribution of ∂p1/∂η to ∂p1/∂y on
y = 0. This requires

I1 =
[

∂

∂y

∫ h

0

[
∂p1

∂η
(ξ, η)

]
η=h

G1(x, y, ξ, h) dξ

]
y=0

.

When x ≥ h benefit can be drawn from (20) and

I1 = 4

h2

∞∑
r=0

∞∑
n=0

(−1)η+r crνn

ν2
r − κ2

n

cos κnh e−iκnx . (22)

For 0 ≤ x ≤ h the analysis is somewhat more complicated because of the structure of G1.
However, the pattern adopted in deriving (20) can be followed. Then, by virtue of (19) and
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∞∑
r=0

sin νrx

νr(ν2
r − κ2

n)
= h

2κ2
n

(cos κnx + sin κnx tan κnh − 1), (23)

I1 = 2

h

∞∑
r=0

cr
sin νrx

cos κrh
− 4i

h2

∞∑
r=0

∞∑
n=0

(−1)n+r crνn

ν2
r − κ2

n

e−iκnh sin κnx. (24)

The two other integrals in (8) do not involve the cr being dependent on p only. Their
evaluation is considered in the next section.

5. The contribution of p

The calculation of ∂p1/∂y on y = 0 from the two integrals involving p in (8) is not straight-
forward because a direct application of the derivative produces singularities in the Green’s
function. Accordingly, some manipulation is necessary to ensure that convergent integrals are
obtained.

Let

I2 =
[

∂

∂y

∫ h

0
p(0, η)

[
∂

∂ξ
G1(x, y, ξ, η)

]
ξ=0

dη

]
y=0

.

There is no difficulty with the series in G1 when x is positive and so

I2 = 2

h

∞∑
n=0

e−iκnx
∫ h

0
p(0, η)νn sin νnη dη.

The main problem now is that a large number of terms has to be calculated when x is small.
To avoid this integrate by parts to secure

I2 = 2

h
p(0, 0)

∞∑
n=0

e−iκnx + 2

h

∞∑
n=0

e−iκnx
∫ h

0

∂p

∂η
(0, η) cos νnη dη.

Since iκn differs by little from νn as n increases e−νnx should be reasonably close to e−iκnx for
the later values of n. Also

∞∑
n=0

e−νnx cos νnη = sinh(πx/2h) cos(πη/2h)

cosh(πx/2h) − cos(πη/h)
.

Hence

I2 = 2

h
p(0, 0)

∞∑
n=0

e−iκnx + 2

h

∞∑
n=0

(e−iκnx − e−νnx)

∫ h

0

∂p

∂η
(0, η) cos νnη dη

+2

h
sinh(πx/2h)

∫ h

0

∂p

∂η
(0, η)

cos(πη/2h)

cosh(πx/h) − cos(πη/h)
dη. (25)

The only place in (25) where many terms of the series may be involved for small x is in the
factor of p(0, 0). It will be seen shortly how this difficulty may be surmounted.

Turn now to
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I3 =
[

∂

∂y

∫ ∞

0
p(ξ, 0)

[
∂

∂η
G1(x, y, ξ, η)

]
η=0

dξ

]
y=0

.

Here the fact that ξ = x lies in the interval of integration is the principal cause of trouble.
Consider

1

iκnh

∫ x

0
p(ξ, 0) e−iκn(x−ξ) dξ.

An integration by parts gives

{p(0, 0) e−iκnx − p(x, 0)}/κ2
nh + 1

h

∫ x

0

∂p

∂ξ
(ξ0)

{
e−iκn(x−ξ)

κ2
n

+ e−νn(x−ξ)

ν2
n

}
dξ

− 1

hν2
n

∫ x

0

∂

∂ξ
p(ξ, 0) e−νn(x−ξ) dξ.

The derivative with respect to η in G1 multiplies by νn. Moreover,

∞∑
n=0

νn

κ2
n

sin νny = −h cos k1(y − h)

2 cos k1, h

∞∑
n=0

e−νn|x|

νn

sin νny = h

2π i
log

sinh(π |x|/2h) + i sin(πy/2h)

sinh(π |x|/2h) − i sin(πy/2h)
,

whence
∞∑
n=0

e−νn|x| cos νny = 1

2

sinh(π |x|/2h) cos(πy/2h)

sinh2(π |x|/2h) + sin2(πy/2h)
,

Hence[
∂2

∂y∂η

∞∑
n=0

1

iκnh

∫ x

0
p(ξ, 0) e−iκn(x−ξ) sin νny sin νnη dξ

]
η=0,y=0

= p(0, 0)
∞∑
n=0

ν2
n

κ2
nh

e−iκnx + 1

2
p(x, 0)k1 tan k1h + 1

h

∞∑
n=0

∫ ∞

0

∂

∂ξ
p(ξ, 0)

{
ν2
n

κ2
n

e−iκn(x−ξ)

+ e−νn(x−ξ)

}
dξ − 1

2h
lim
y→0

∫ x

0

∂

∂ξ
p(ξ, 0)

sinh(π |ξ − x|/2h) cos(πy/2h)

sinh2{π |ξ − x|/2h} + sin2(πy/2h)
dξ.

By repetition of the above process for the remaining integrals in I3 it is found that

I3 = 2p(0, 0)
∞∑
n=0

ν2
n e−iκnx

κ2
nh

+ p(x, 0)k1 tan k1h

+1

h

∞∑
n=0

∫ x

0

∂

∂ξ
p(ξ, 0)

{
ν2
n

κ2
n

e−iκn(x−ξ) + e−νn(x−ξ)

}
dξ
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−1

h

∞∑
n=0

∫ ∞

x

∂

∂ξ
p(ξ, 0)

{
ν2
n

κ2
n

e−iκn(ξ−x) + e−νn(ξ−x)

}
dξ

+1

h

∞∑
n=0

∫ ∞

0

∂

∂ξ
p(ξ, 0)

{
ν2
n

κ2
n

e−iκn(x+ξ) + e−νn(x+ξ)

}
dξ

− 1

2h

∫ ∞

0

∂

∂ξ
p(ξ, 0)

dξ

sinh{π(x + ξ)/2h}

+ 1

2h
lim
y→0

∫ ∞

0

∂

∂ξ
p(ξ, 0)

sinh{π(ξ − x)/2h} cos(πy/2h)

sinh2{π(ξ − x)/2h} + sin2(πy/2h)
dξ. (26)

The awkward part of the summation has been isolated now in the last two terms of (26). The
remaining series are convergent for all values of the variables with the exception of the factor
of p(0, 0) as x → 0. Fortunately, when it is added to the corresponding term in (25) the
resulting series is convergent, even when x is zero.

For the evaluation of the limit in (26) note that it can be written

1

2h

∫ ∞

0

{
∂

∂ξ
p(ξ, 0) − ∂

∂x
p(x, 0)

}
dξ

sinh{π(ξ − x)/2h}

+ ∂

∂x
p(x, 0) lim

y→0

1

2h

∫ ∞

0

sinh{π(ξ − x)/2h} cos(πy/2h)

sinh2{π(ξ − x)/2h} + sin2(πy/2h)
dξ.

Inside the limit the integral over the interval (0, 2x) vanishes because the integrand is odd
about ξ = x. Therefore

lim
y→0

1

2h

∫ ∞

0

∂

∂ξ
p(ξ, 0)

sinh{π(ξ − x)/2h} cos(πy/2h)

sinh2{π(ξ − x)/2h} + sin2(πy/2h)
dξ

= 1

2h

∫ ∞

0

{
∂

∂ξ
p(ξ, 0) − ∂

∂x
p(x, 0)

}
dξ

sinh{π(ξ − x)/2h}

+ 1

2h

∂

∂x
p(x, 0)

∫ ∞

2x

dξ

sinh{π(ξ − x)/2h} (27)

= 1

2h

∫ ∞

2x

∂

∂ξ
p(ξ, 0)

dξ

sinh{π(ξ − x)/2h}

+ 1

2h

∫ 2x

0

{
∂

∂ξ
p(ξ, 0) − ∂

∂x
p(x, 0)

}
dξ

sinh{π(ξ − x)/2h} .

As a result of these manoeuvres[
∂p1

∂y

]
y=0

= I1 + I2 + I3 (29)
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where I1 is given by (22) or (24) depending on the value of x, I2 by (25) and I3 by (26)
as modified by (27) or (28). To evaluate the expressions in (29) p needs to be known. Its
determination is considered in the next section.

6. An incident plane wave

The function p is specified by (6) where (x0, y0) is a point of free space. The formula for
the Green’s function is expressed most conveniently in terms of polar coordinates. Let x =
r cos φ, y = r sin φ where φ lies in ( 1

2π, 2π ) for (x, y) in free space. Likewise let (r0, φ0) be
the polar coordinates of (x0, y0).

Define Cµ(r, ρ) by

Cµ(r, p) =
{

Jµ(r)H
(2)
µ (ρ) (r ≤ ρ)

Jµ(ρ)H
2
µ(r) (r ≥ ρ)

where Jµ and H(2)
µ are the standard Bessel and Hankel functions of order µ, respectively.

Remark that Cµ(r, ρ) = Cµ(ρ, r). Let ε0 = 1 and εm = 2 (m > 0). Then, if µm = 2m/3,

G0(x, y, x0, y0) = − i

3

∞∑
m=0

εmCµm
(kr, kr0) cos

2m

3

(
φ − π

2

)
cos

2m

3

(
φ0 − π

2

)
(30)

is the Green’s function with vanishing normal derivative on the faces of the coating.
To reduce the number of parameters involved and simplify the subsequent analysis it will

be assumed now that kr0 is large. Multiply (30) by 23/2i(πkr0)
1/2 ei(kr0−π/4) and let kr0 →

∞. The incident field goes over to the plane wave eikr cos (φ−φ0), which has its source in the
direction of φ0, and

G0 = 4

3

∞∑
m=0

εm e
1
2 µmπ iJµm

(kr) cos
2m

3

(
φ − π

2

)
cos

2m

3

(
φ0 − π

2

)
.

Hence, for the incident wave eikr cos (φ−φ0),

p(x, 0) = 4

3

∞∑
m=0

εm e
1
2µmπ i(−1)mJµm

(kx) cos
2m

3

(
φ0 − π

2

)
, (31)

p(0, y) = 4

3

∞∑
m=0

εm e
1
2µmπ iJµm

(ky) cos
2m

3

(
φ0 − π

2

)
. (32)

It is somewhat easier to visualise which face the source of the plane wave is closest to by
putting φ0 = φ1 + 5π/4. Then φ1 = 0 corresponds to a source on the line joining the edges
of the coating and wedge. As φ1 increases the source moves towards the lower face which
lies on φ1 = 3π/4. Negative values of φ1 make the source closer to the upper face which is
φ1 = −3π/4. With this change the cosine in (31) and (32) becomes cos{2m(φ1 + 3π/4)/3}.

Each term in the series (31) or (32) can be dealt with separately. Suppose we take p(x, 0) =
(−1)mJµm

(kx) and p(0, y) = Jµm
(ky). Then f (x) is known from (11) and then (21) provides

equations to determine the corresponding cr . Consequently I1 can be calculated from (22) and
(24); denote its value by I1(µm). Define I2(µm) and I3(µm) in a similar fashion. It is evident
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from (22) that I1(µm) becomes exponentially small as x → ∞. The formula (25) reveals that
I2(µm) is exponentially small too. With regard to I3(µm) it is clear, when account is taken of
(28), that the integrals provide a small contribution. Hence the term in p(x,0) dominates with
the result

∂p1

∂y
∼ p(x, 0)k1 tan k1h

as x → ∞ on y = 0.
Let Z be the normalised surface impedance presented to the exterior field on the lower face

of the coating. Then

Z = i

k

∂p/∂y

p
= ik

k2
y

∂p1/∂y

p

by virtue of (3). Thus

Z ∼ (ik/k1) tan k1h (33)

as x → ∞.
Next the case when x → 0 is examined. The Bessel functions are finite at the origin. So

are their derivatives apart from J2/3. Hence the only term which can supply singular behaviour
at the origin arises from J2/3. It is not difficult to show from the preceding formulae that, if
only singular terms are retained,

Z ≈ ik5/321/331/2 eπ i/3

(− 1
3 )! k2

1x
1/3

cos
2

3

(
φ1 + 3π

4

)
(34)

as x → 0. Thus Z becomes unbounded at the edge of the coating for all positions of the
source except one. The exception is φ1 = 0 when the singularity disappears, i.e. Z is finite at
the edge when the structure is excited symmetrically. This is in accord with the predictions of
static considerations in the neighbourhood of the edge.

In general

Z = 4ik

3k2
1p

∞∑
m=0

εm e
1
2 µmπ i{I1(µm) + I2(µm) + I3(µm)} cos

2m

3

(
φi + 3π

4

)
(35)

where p is given by (31) with the change from φ0 to φ1. The advantage of this form from
a computational point of view is that I1(µm), I2(µm) and I3(µm) need to be calculated only
once and then stored. They do not vary with the position of the source.

Equations (33) and (34) are estimates of the limiting behaviour of (35). It is not by any
means transparent from the foregoing discussion how large x must be for Z to assume a
constant value for which (33) offers a first approximation. An example in the next section
suggests that the transition takes place within a free-space wavelength from the edge of the
coating.

7. An example

To illustrate the preceding theory Z has been calculated from (35) for a coating in which
k1/k = (10 − 10i)1/2 = 3·47434 − 1·43912i. This value is the same as that employed for the
impedance when the perfectly conducting wedge is absent (see Jones [1, 2]). The thickness
of the coating is specified by h = 0·08λ where λ is the free-space wavelength. With these
parameters the asymptotic estimate of (33) gives
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Figure 1. Magnitude of impedance when k1/k = (10 − 10i)1/2, h = 0·08λ for φ1 = −108◦, 0◦, 108◦.

Figure 2. Phase of impedance when k1/k = (10 − 10i)1/2, h = 0·08λ for φ1 = −108◦, 0◦, 108◦.
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|Z| ∼ 0·4154, ph(Z) ∼ 12·77◦. (36)

Graphs of the magnitude and phase of Z have been drawn in Figures 1 and 2 for various
positions of the source. The solid curve corresponds to φ1 = 108◦. For this angle of incidence
the lower face is illuminated by the incident plane wave, while the upper face is in shadow.
The dashed curve is for φ1 = 0◦; in this case the source occupies a position on the line joining
the two edges and both faces are illuminated symmetrically. The remaining (dotted) curve
gives Z for φ1 = −108◦; now the upper face is illuminated but the lower face is in shadow.
Although Z is given only on the lower face, its value on the upper face can be inferred by
considerations of symmetry. Hence, for these angles, the surface impedance is known over the
entire boundary of the coating.

On the graphs the horizontal coordinate indicates the distance from the edge of the coating
in terms of the thickness. In order to facilitate comparison with the free-space wavelength, a
dot has been placed at a distance of λ/2 from the edge of the coating.

It can be seen that in all the graphs Z has settled down to a constant value well before x

reaches 10h. Since 10h < λ, the transition to constant impedance occurs within a free-space
wavelength of the edge of the coating. It does not matter whether the face is in shadow or not.
The magnitude of the constant impedance is in excellent agreement with the estimate of (36).
The phase is not quite so close, there being differences of a degree or two. Nevertheless, the
agreement is good enough to regard (33) as a tolerable approximation to Z as soon as one is a
wavelength from the edge.

On the whole the magnitude settles down faster than the phase. As soon as one is two
thicknesses from the edge the magnitude is fairly near its final value, whereas the phase may
require four or more thicknesses before approaching its terminal constancy. The curve of the
magnitude is similar for all excitations except the symmetrical. From a largish value near
the edge it falls to a minimum and then rises to its asymptotic value. The phase exhibits
more variation between the illuminated and shadow sides. On the illuminated side it rises to
a maximum before dropping to its final value whereas in the shadow it falls steadily as the
distance from the edge increases.

8. Conclusion

A method has been devised for finding the surface impedance of a coated right-angled wedge
irradiated by a TE plane wave. The theory holds provided that the coating is of high contrast
and dissipative. In addition, the wedge must be perfectly conducting. Over much of each face
of the coating the surface impedance is constant and the same as if the coating were backed
by a perfectly conducting infinite plane. This statement applies and the constant is the same
whether the face is illuminated or in the shadow. The impedance does vary within the vicinity
of the edge of the coating. Probably the region of variability does not extend beyond a free-
space wavelength from the edge so long as the contrast and absorption of the coating are high
enough.
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